

SiGe based low temperature electronics for lunar applications

Presented by:

Mohammad M Mojarradi
Jet Propulsion Laboratory, California Institute of Technology

Co Authors:

Elizabeth Kolawa (Jet Propulsion Laboratory)
John Cressler (Georgia Institute of Technology)
Benjamin Blalock (University of Tennessee)

Key Challenges

Present paradigm

- Use "Warm Electronic Box"
- Use traditional electronics
- Use traditional RTG

New paradigm

- "No Warm Electronics Box"
- Ultra low power and low noise, low temperature instrument quality electronics
- Mini RTG + low temperature rechargeable batteries for burst power

e-mail: Mohammad.M.Mojarradi@JPL.NASA.GOV

Key Challenges

- -180°C temperature
 - Can electronics operate at −180°C

Yes

Can we make ultra low power instrumentation quality electronics

TBD

- Power sources and energy storage technology
 - What are the technology options for powering a science craft
 - What are the alternative technologies for low temperature energy storage

Silicon-Germanium as an Enabling Technology for Extreme Environment Electronics

John D. Cressler

Ken Byers Professor School of Electrical and Computer Engineering Georgia Tech, Atlanta, GA 30332-0250 USA cressler@ece.gatech.edu

This work was supported by NASA, DTRA, IBM, DARPA, JPL, TI, and NSC

John D. Cressler, 3/11

Cryogenic Operation of SiGe HBTs

John D. Cressler, 11/10

SiGe HBTs for Cryo-T

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection (β 1)
- field from graded base bandgap decreases base transit time (f_T 1)
- base bandgap grading produces higher Early voltage (V_A 1)

$$\left. \frac{\beta_{SiGe}}{\beta_{si}} \right|_{V_{BE}} \equiv \Xi = \left\{ \frac{\widetilde{\gamma} \, \widetilde{\eta} \, \Delta E_{g,Ge}(grade) / \underline{kT} \, e^{\Delta E_{g,Ge}(0) / \underline{kT}}}{1 - e^{-\Delta E_{g,Ge}(grade) / \underline{kT}}} \right\}$$

$$\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\widetilde{\eta}} \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left\{ 1 - \frac{\underline{kT}}{\Delta E_{g,Ge}(grade)} \left[1 - e^{-\Delta E_{g,Ge}(grade)/\underline{kT}} \right] \right\}$$

$$\left. \frac{V_{A,SiGe}}{V_{A,Si}} \right|_{V_{RE}} \equiv \Theta \simeq e^{\Delta E_{g,Ge}(grade)/kT} \left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right]$$

All kT Factors Are Arranged to Help at Cryo-T!

SiGe HBTs at Cryo-T

Cryo-T Radiation

First 77K Proton Irradiation Experiment in SiGe Technology

- 63 MeV protons at UC Davis
- Radiation Damage Smaller at 77K Than at 300K (great news!)

no change in peak β at 100 krad at 77K!

Cryogenic SiGe LNAs

9

X-band LNA Operation at 15 K (Not Yet Optimized!)

- T_{eff} < 20 K (noise T)
- NF < 0.3 dB
- Gain > 20 dB
- dc power < 2 mW

Collaboration with S. Weinreb, Cal Tech

This SiGe LNA is also Rad-Hard!

John D. Cressler, 11/10

Aggressive Cascode X-band SiGe PA

- Current ¼-W SiGe X-band solution (5V): 32 parallel devices
- Can this P_{out} be achieved with a smaller (20 dBm) PA core?

→ Design Cascode PA Using Aggressive V_C Bias

Single-stage Cascode PA Schematic: Power Simulations With Aggressive (0.12x18um² HS \rightarrow 0.6x18um² HB) x8 Collector Voltage Bias: $\rightarrow P_{out} > 24 \text{ dBm}_{post}$

SiGe BV - Extreme Environments

Both radiation and low T degrade the CB SOA

> CB stability analysis used to examine various pinch-in influences

Cryogenic Operation of CMOS

John D. Cressler, 11/10

Sub-Threshold Behavior

 $\underline{\emptyset}$

- First Generation SiGe BiCMOS (0.35 um L_{eff})
- V_T and Subthreshold Swing Increase with Cooling
- Output Drive Improves with Cooling

Output Characteristics

- Improved Current Drive With Cooling
- Modest Degradation in Output Conductance

T Dependence

- V_T Increases with Cooling / S Decreases with Cooling
- g_m Increases with Cooling / μ Increases with Cooling

Device Reliability

- I_{SUB} is a Good Monitoring Parameter for HCE
- After Stress, I_d and g_m Decrease While V_T and S Increase

MOSFET L,T Dependence Georgia Institute of Technology

- Lifetime Decreases with Cooling at Fixed L
- Lifetime Decreases with L at Fixed T (Mitigation Path)

Remote Electronics Unit

The X-33 Remote Health Unit, circa 1998

The ETDP Remote Electronics Unit, circa 2009

Conceptual integrated REU system-on-chip SiGe BiCMOS die

Specifications

- $5" \times 3" \times 6.75" = 101 \text{ in}^3$
- 11 kg
- 17 Watts
- -55°C to +125°C

Goals

- $1.5" \times 1.5" \times 0.5" = 1.1 \text{ in}^3 (100x)$
- < 1 kg (10x)
- < 2 Watts (10x)
- -180°C to +125°C, rad tolerant

Supports Many Sensor Types:

Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

Use This REU as a Remote Vehicle Health Monitoring Node

SiGe REU Architecture

Major Advantages:

- Eliminates Warm Box (size, weight, and power; allows de-centralized architecture)
- Significant Wiring Reduction (weight, reliability, simplifies testing & diagnostics)
- Commonality (easily adapted from one system to the next)

RSI Chip for REU

NASA ETDP: SiGe Integrated Electronics For Extreme Environments

□ RSI (CRYO-5a):

- 16-channel monolithic Remote Electronics Unit Sensor Interface (RSI) ASIC
- 10 mm x 14 mm
- Current I/O estimate 236 I/O
 - 139 signal I/O
 - 50 ESD
 - 40 power I/O
 - 7 explicit test I/O
- Top-Level cells:
 - UT (1) 12-bit 16-channel
 Wilkinson ADC
 - UARK (12) Low-speed Channels
 - AU (2) High-speed channels
 - GT (2) Charge-amp channels
 - UT (1) Flying capacitor 6-phase clock generator

CRYO-5A 10x14 mm²

MISSE-6 ISS Mission

S123E009551

Recent NASA photograph of MISSE-6 after deployment, taken by the Space Shuttle Crew

John D. Cressler, 11/10 21

Ultra Low Power Mixed-Signal Design **Challenges for Moon**

Ben Blalock Integrated Circuits & Systems Laboratory The University of Tennessee

November 3, 2010

Some Perspective...

Integrated Circuits and Systems Laboratory

■ Battery life with 1 µA:

With 1.2 µA supply current, 30 mAh battery can continuously supply for 5 years!

From 30 mAh to 600 mAh

>> 600 mAh

What 1 µA can do?

Integrated Circuits and Systems Laboratory

- Quite a bit—thanks to ultra low power IC design
- □ E.g., Swithed Capacitor Voltage Reference running on 1 µA:

Not designed for cold temperature...

S. Chen and B. J. Blalock, "Analog Circuits for Nano-Power Applications," submitted to *IEEE Transactions on Circuits and Systems II*.

Ultra Low Power Circuit Design

Integrated Circuits and Systems Laboratory 4

- □ Subthreshold (weak inversion) operation has been heavily utilized to accommodate bias current scaling to reduce power
- MOSFET in Weak Inversion:
 - Transconductance efficiency (g_m/I_D) is at a maximum
 - Speed/Watt or precision/Watt is maximized
 - Low value of V_{DSAT} (≈ 0.1V) required for saturation enables lower V_{DD}
 - Velocity saturation is non-existent in subthreshold designs
 - Carrier heating effects that lead to noise & degradation of I_D are avoided
 - Subthreshold exponential I_D relation can be leveraged to implement analog computation systems
 - But... High g_m/I_D ratio and exponential dependency of I_D on voltage and temperature results in high sensitivity to transistor mismatch (at least 2X worse) and temperature

Challenges and Future Work

Ultra-Low Power Low Temperature Electronics

- Ultra low power vs. temperature
 - Present design techniques call for reduction of the supply voltage; however:
 - MOSFET threshold voltages increase as temperature decreases.
 - BJT (SiGe) V_{be} increases as temperature decreases.
- This means for the same signal strength, we need larger supply voltage at lower temperatures.
- Industry trend is supply voltage reduction: 5V to 3.3V to 1.2V to 0.8V...

Challenges and Future Work

Instrument Quality, Low Noise and Low Power Electronics

- Precision low noise electronics vs. power and temperature
 - Precision electronics need large voltage headroom
 - Precision electronics use high bias current to reduce device noise
- Combination of current and voltage means power...

Curtis M. Grens, 04/09/09

Digital Electronics-Synchronous Machines

Field programmable Gate Arrays

- Reduced clock speed to avoid signal collision
- ACTEL FPGA's can operate to -180C. Xilinx FPGA's have cold start problem at T<-60C (Use micro heater as a starter)
- SRAMs can operate to -180C
- DRAM (high density) do not operate at -180C due to readout circuits. Ben can fix this in a jiffy.
- Flash memory not tested for Lunar temp

Revolutionary ideas:

Asynchronous computing

Adiabatic computing